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Abstract
The hydrologic cycle is a fundamental component of the climate system with critical societal and
ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to
increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water
provide a unique opportunity to evaluate hydrological processes and investigate their role in the
variability of the climate system and its sensitivity to change. Water isotopes also form the basis of
many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments,
corals, and speleothems. These records hold most of the available information about past
hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common
currency’ that links paleoclimate archives to modern observations, allowing us to evaluate
hydrologic processes and their effects on climate variability on a wide range of time and length
scales. Building on previous literature summarizing advancements in water isotopic measurements
and modeling and describe water isotopic applications for understanding hydrological processes,
this topical review reflects on new insights about climate variability from isotopic studies. We
highlight new work and opportunities to enhance our understanding and predictive skill and offer
a set of recommendations to advance observational and model-based tools for climate research.
Finally, we highlight opportunities to better constrain climate sensitivity and identify
anthropogenically-driven hydrologic changes within the inherently noisy background of natural
climate variability.

1. Introduction: water isotopes and the global water cycle

The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological
relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse
gas forcing (Sherwood et al 2010, Burls and Fedorov 2017). The response of the hydrologic cycle to natural
radiative forcing factors, such as volcanic eruptions, is also uncertain, as is the full range of hydrologic
variability internal to the Earth system, particularly on decadal and longer timescales. Since water vapor,
clouds, and precipitation all modify Earth’s radiative balance, the ability to characterize and simulate both
internal and forced hydrologic variability is essential to accurately predict the pace and pattern of climate
change.

Part of our uncertainty about how the hydrologic cycle has changed in the past and will change in the
future is due to the short length of the instrumental record, which is limited to several decades (even in the
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Figure 1. Scales of information obtained from stable water isotopes. (a) Processes captured by water isotopes on various
timescales. (b) Data sources. Timescales of climate variability captured by water isotope observations, models, and paleoclimate
archives.

most highly sampled regions). This uncertainty is also a consequence of poorly constrained hydrologic
parameterizations in numerical models, resulting from limitations in our understanding of the myriad
processes involved in the water cycle. Nowhere is the impact of these poorly constrained parameterizations
more clear than in our decades-long struggle to simulate clouds and constrain climate sensitivity in global
simulations. Estimates of climate sensitivity in state-of-the-art coupled general circulation models (GCMs)
diverge widely in large part due to the diverse and uncertain treatment of clouds, precipitation, and other
hydrologic processes that are not resolved on the coarse scale of model grids (Arias et al 2021). Overcoming
these obstacles and improving our understanding of the global water cycle and how it responds to external
changes in climate thus necessitates new approaches that leverage diverse data sources, integrate information
over long time periods, and include robust data-model synthesis efforts.

The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate
hydrological processes and investigate their role in the variability of the climate system and its sensitivity to
change. Since heavy and light isotopes move through phase changes at distinct rates—a result of different
atomic masses, diffusivities, and vapor pressures (Dansgaard 1964)—their ratio provides an integrated
history of moisture exchange (Gat 1996, Galewsky et al 2016). This history records the fluxes of water that
connect land, sea, and air, regulating the basic states of the biosphere, ocean, and atmosphere. Water isotopes
thus act as an additional ‘degree of freedom’ for understanding the complex hydroclimate system, providing
information beyond what standard hydrologic variables, such as specific humidity or precipitation amount,
can offer (Lee and Fung 2008, Bailey et al 2015, Nusbaumer et al 2017, Wright et al 2017, Risi et al 2012a,
Wright et al 2009).

Water isotopes also form the basis of many paleoclimate proxy measurements in a variety of archives,
including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the
available information about past hydrologic variability prior to instrumental observations (and see Konecky
et al 2020 for a review). Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to
modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on
a wide range of time and length scales (figure 1).

Indeed, stable water isotope ratios also create a common unit that uniquely links paleoclimate
reconstructions, modern climate observations, and isotope-enabled model simulations. Interpretation of
both paleoclimate and modern observations is bolstered by the integration of water isotopes in GCMs
(Joussaume et al 1984), from models of intermediate complexity (Brennan 2012, Roche 2013, Dee et al
2015b, Mathieu et al 2002) to fully coupled GCMs (Werner et al 2001, Noone and Simmonds 2002, Schmidt
et al 2007, Lee and Fung 2008, Tindall et al 2009, Risi et al 2010, Kurita et al 2011, Werner et al 2011, Field
et al 2014, Nusbaumer et al 2017, Brady et al 2019, Cauquoin et al 2019, Yoshimura et al 2008). Such efforts
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have facilitated many new developments in the interpretation of proxy records—moving the field away from
interpreting individual records in isolation toward identifying changes in the global climate state that are
consistent with the isotopic variability captured by large networks of proxy records (Steiger et al 2017, Zhu et
al 2017, Hu et al 2019, Zhu et al 2020, Dee et al 2017, Thompson et al 2021, Du et al 2021, Falster et al 2021,
He et al 2021, and many others). Water isotope enabled models have also created opportunities to evaluate
the performance of climate models, identifying deficiencies in numerical representations of key processes
such as moisture transport, circulation, cloud physics, and precipitation efficiency (Nusbaumer et al 2017,
Dütsch et al 2019, Hu et al 2020, Risi et al 2012a).

Building on previous reviews that report advancements in water isotopic measurements and modeling
and describe water isotopic applications for understanding hydrological processes (Galewsky et al 2016, Jones
and Dee 2018, Bowen et al 2019), this paper reflects on insights about climate variability generated from
isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill.
Progressing from long to short timescales, we discuss how water isotopes have improved our understanding
of internal variability and externally-forced changes in the climate system, including changes in the
large-scale circulation and global teleconnection patterns. We also highlight how water isotopic information
has allowed us to detect variations in inherently noisy systems like the El Niño-Southern Oscillation (ENSO),
and to better understand the complex interplay of moistening and drying that governs the Madden−Julian
Oscillation (MJO). Our review is further organized by dominant proxy or measurement type, even though
multi-proxy syntheses, model-data comparisons, and studies combining proxies and modern observations
are becoming increasingly common and necessary. Based on our synthesis of the literature, we offer a set of
recommendations to advance observational and model-based tools for climate research, and highlight
opportunities to 1) better constrain climate sensitivity and 2) identify anthropogenically-driven hydrologic
changes within the inherently noisy background of natural climate variability.

2. Background: tools of the trade

2.1. Understanding oxygen and hydrogen isotopes and fractionation
Three stable isotopes of oxygen (16O, 17O, 18O) and two stable isotopes of hydrogen (1H, 2H) exist in nature.
Isotopologues of water molecules thus have multiple potential configurations with different atomic masses,
including the most abundant 1H1H16O and the more rare 1H1H18O, 1H1H17O, and 2H1H16O. Ratios of the
heavier (more rare) isotope to the lighter (most abundant) isotope are expressed in delta notation relative to
a standard—in this case, the International Atomic Energy Agency Vienna Standard Mean Ocean Water:

δ18O, δ2H [h] =

(
RSAMPLE

RSTANDARD
− 1

)
· 1000 (1)

where RSAMPLE and RSTANDARD are the ratios of the concentrations of (18O/16O) or (2H/1H) in the sample and
the standard, respectively (R= 18O/16O). The resulting δ value, with units permil (‰), can be negative or
positive. While seawater values are typically within several permil of zero, atmospheric vapor and
precipitation values are often negative. δ values may be considered ‘high’ (and their medium ‘enriched’) even
if they are negative, so long as the abundance of the heavy isotope relative to the light isotope is higher than
expected. Likewise, δ values are considered ‘low’ (and their medium ‘depleted’) so long as the relative
abundance of the heavy isotope is lower than expected.

Water isotopes are valuable tools to understand the hydrologic cycle due to their fractionation—or
relative partitioning—during phase changes. This isotopic imprint is conserved, providing a way to
characterize and trace air and ocean masses in the absence of further phase changes or mixing (Noone et al
2011, Galewsky et al 2016, Gedzelman and Arnold 1994, LeGrande and Schmidt 2006). One form of
mass-dependent fractionation—equilibrium fractionation—results from the fact that the saturation vapor
pressures of water isotopologues decrease with increasing atomic mass (i.e. heavier isotopologues have lower
vapor pressures). Thus, during evaporation, water molecules that contain a heavy isotope preferentially
remain in the condensed phase relative to water molecules containing only lighter isotopes. Similarly, water
molecules that contain a heavy isotope preferentially condense. Importantly, this type of fractionation is only
sufficient for describing isotopic partitioning under conditions of thermodynamic equilibrium (e.g. during
the condensation of water vapor from saturated air parcels).

The Rayleigh distillation model (figure 2) provides one of the simplest ways to quantify the effect of
equilibrium fractionation on atmospheric water vapor during condensation (Dansgaard 1964, Gat 2010):

Rt = R0 f
(α−1). (2)
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Figure 2. Isotopic fractionation during rainout and Rayleigh distillation. Adapted from figures 2–13, Clark and Fritz (1997),
‘Environmental Isotopes in Hydrogeology’ and figures 4–10. Adapted with permission from Sharp (2017) ‘Principles of Stable
Isotope Geochemistry.’ The figure shows a simple approximation for moisture transport from the equatorial latitudes towards the
poles. As moisture travels polewards, the isotopic composition of the rain and vapor is continuously depleted as a function of
remaining water vapor fraction, f.

Here, R0 is the initial molar ratio between the heavy and light isotopes, Rt is that ratio at a later time (t),
(1-f ) is the fraction of initial moisture that has precipitated (and thus left the system), and alpha (α) is the
isotopic equilibrium fractionation factor during condensation, which equals the isotopic ratio of the
condensate (which is lost) over that of the water vapor. This fractionation factor increases as temperature
decreases, meaning that the isotopes are more heavily fractionated during condensation at colder
temperatures:

α(l−v) =
RLIQUID

RVAPOR
(3)

where RLIQUID is the ratio of 18O/16O (or 2H/1H) for the liquid, and RVAPOR is the ratio of (18O/16O) for the
vapor. Values for equilibrium fractionation factors have been determined empirically for each isotope ratio
and depend on whether the phase change involves liquid or ice (e.g. Majoube 1971).

As a model for the atmosphere, Rayleigh distillation makes several overly simplistic
assumptions—namely, that condensation immediately precipitates and is thus removed from the system, and
that the mixing of air masses is negligible. Nevertheless, it provides a useful conceptual framework for the
behavior of isotope ratios in water vapor and precipitation (figure 2). Although α depends on temperature, it
tends to vary temporally in any given location by only a few percent. The dominant driver of isotopic change
in water vapor is the amount of condensation and rainout (1-f ) that occurs as an air parcel is transported.
Thus, as vapor condenses while moving from the tropical oceans to higher latitudes, or from marine to
continental locations, the δ values of the vapor—and the subsequent precipitation that forms from that
vapor—decrease. Though temperature has little direct effect on isotope ratios, its indirect effect is still
important: it modifies the atmosphere’s capacity to hold moisture and the resulting efficiency of precipitation
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Figure 3. Equilibrium and kinetic fractionation processes alter the isotopic composition of environmental waters. Kinetic
fractionation during evaporation (orange line) will preferentially remove lighter isotopes from the system, producing an offset
between the global meteoric water line (GMWL) and the resulting vapor. Adapted with permission from Sharp (2017).

in transferring (or cycling) water between the atmosphere and Earth’s surface. It is because of the strong
dependence of these two factors on global temperature, and the covariance between temperature and the
general circulation, that water isotope variations can help us map out changes in characteristic moisture
transport pathways—and, consequently, moisture source regions—as global climate warms or cools.

While mass-dependent fractionation occurs in a state of thermodynamic equilibrium, nonequilibrium
fractionation also partitions isotopes through different phases of the water cycle (figure 3). This
nonequilibrium, or kinetic fractionation is due to the lower diffusivities of the heavier isotopologues (as
diffusivities also depend on mass) and manifests strongly during evaporation from oceans, lakes, and other
surface water bodies, as well as during rain re-evaporation. In the case of evaporation, lower diffusivities
cause the heavier isotopologues to be even less likely to enter the gas phase than equilibrium fractionation
would predict. A similar effect occurs under strong supersaturation, such as in mixed-phase cloud
conditions. There, however, kinetic fractionation works to oppose, rather than enhance, the partitioning
caused by equilibrium fractionation.

Since 2H diffuses more readily than 18O, kinetic fractionation also influences the δ18O-δ2H relationship,
as quantified by the deuterium- or d-excess, which has been traditionally defined as:

dexcess = δ2H - 8 · δ18O. (4)

In precipitation, d-excess is often expected to be close to 10‰ (Craig 1961, Gat 2005). This value
represents the average nonequilibrium effects of seawater evaporation globally. However, d-excess can vary
by tens of permil regionally depending on the temperature, relative humidity, and other climatic conditions
where the moisture first evaporated. Because condensation tends to occur much closer to equilibrium
conditions than evaporation, d-excess is often considered a tracer of moisture source changes (e.g. Johnsen
et al 1989, Ciais et al 1995, Pfahl and Sodemann 2013, Chen et al 2020). Recently, new logarithmic definitions
of d-excess have become popular, because they reduce the d-excess dependence on temperature, making the
parameter a better pseudo-conserved tracer of moisture origin during transport (Kopec et al 2016, Dütsch
et al 2019).

The controls on water isotope ratios in the ocean, lakes, and other freshwater bodies are similar to those
described above for the atmosphere. Evaporation preferentially removes isotopically light water, causing the
remaining liquid reservoir to become isotopically heavier, or more ‘enriched’, while freshwater inputs from
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Figure 4. Proxy system models provide an interpretive framework for water isotope-based paleoclimate proxy systems. Models
have been developed for a number of proxies and in multiple programming languages, as shown in the figure, including corals,
speleothems, wood cellulose, glacier ice, and lake and marine sediments. Existing models have been compiled and are housed in
community projects such as PRYSM (https://github.com/sylvia-dee/PRYSM) (Dee et al 2015a). Under observation models, BAM
and BChron are both published models for simulating age uncertainties in proxy archives (Banded Age Model, Comboul et al
2014, Parnell 2014).

precipitation or river runoff cause the water bodies to become isotopically lighter or more ‘depleted.’ In most
oceanic regions, the seawater isotope ratio is thus strongly correlated with sea surface salinity. Other factors
influencing regional seawater isotope ratios include upwelling and currents, which advect the isotopic
signatures of evaporation and freshwater inputs from one location to another.

A variety of geological archives like coral skeletons, cave deposits, and the carbonate shells and cellular
material of organisms preserved in lake and ocean sediments incorporate the isotopic composition of
surrounding water into their structure, preserving information on water isotopes in precipitation, seawater,
and lake water over timescales ranging from hundreds to millions of years (as discussed in section 3).
Additional fractionation takes place during the incorporation of isotopic information into the archive in
ways that are specific to the biophysical processes operating within each archive. Extracting the original
climate signal from the signals retrieved from the paleoclimate archive is not a trivial process and requires
several layers of interpretation. Proxy systemmodels (PSMs, Evans et al 2013) account for all transformations
between climate variations and proxy observations, and are now widely used in the interpretation of water
isotope-based paleoclimate records (Dee et al 2015a). Among other things, they help disentangle how
isotopic compositions in meteoric and ocean waters are altered by post-depositional processes. A schematic
summarizing how PSMs work and available models for water isotope-based systems is given in figure 4.

2.2. Recent advances in recovering water isotope information from the past, present, and future
2.2.1. Advances in reconstructing the past
Many paleoclimate reconstructions have been published with varying levels of metadata descriptions, and
interpreting results has often required specialist knowledge of the environmental drivers of individual proxy
archives. New global paleoclimate networks are closing this usability gap in the existing suite of paleoclimate
reconstructions. Water isotope-based paleoclimate databases include Iso2k (figure 5), which includes all
proxy types and provides comprehensive metadata allowing efficient proxy intercomparison (Konecky et al
2020). Proxy-specific databases such as SISAL (speleothems) (Atsawawaranunt et al 2018) and CoralHydro2k
(corals) (Walter et al 2022) allow for investigation of climate changes through a proxy-specific lens. Such
databases are well-suited for evaluating hydroclimate processes through time and space by facilitating
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Figure 5. The Iso2k paleoclimate proxy dataset compiles all water isotope—based proxy observations spanning the last 2000 years.
Proxy types and locations available in Iso2k are given on the map. Adapted from Konecky et al (2020). CC BY 4.0.

large-scale syntheses, model-data intercomparison, and paleoclimate data assimilation (Paleo-DA). Indeed,
the newly launched Past Global Changes (PAGES) Phase 4 effort is focused on reconstructing hydroclimate
variability over the Common Era using these and other hydroclimate databases. Recent efforts to improve
and develop new PSMs (e.g. Evans et al 2013, Dee et al 2015a, 2018b, Konecky et al 2019, Malevich et al
2019) further complement the development of these databases, allowing the climate information contained
in the records to be more explicitly resolved.

2.2.2. Advances in monitoring the present
Rapid advances in stable water isotope measurement technology have positioned us to evaluate water cycle
processes controlling climate variability in greater detail, and to refine interpretations of paleoclimate data.
In addition, the establishment of large water isotope databases have positioned water isotopes to contribute
significantly to our understanding of internal climate variability and forced change. Galewsky et al (2016)
reviewed recent advances with respect to the measurement of water vapor. These include advances in remote
sensing of water vapor isotopologues from space that have supported the development of multi-year to
multi-decadal gridded datasets, providing important context for understanding spatial variability in
hydrologic processes and atmosphere’s water balance (Galewsky et al 2016, Shi et al 2022, Bailey et al 2017,
Tuinenburg et al 2015, Lacour et al 2018, Risi et al 2012a, Risi et al 2012, etc). They also include the
widespread adoption of cavity-ringdown spectroscopy and off-axis integrated cavity output spectroscopy
instruments, which have high throughput and are designed to measure both water vapor and liquid water
samples (Gupta et al 2009). These analyzers have several advantages over traditional mass spectrometry
techniques. They are field-deployable, which has supported the recent proliferation of in-situ land-based,
ship, and aircraft measurements of vapor stable isotope values to investigate water cycle processes (Galewsky
et al 2016, Bailey et al 2022). They also facilitate high-resolution measurements of isotope ratios in ice cores
(e.g. at sub-annual resolution, Jones et al 2018) when paired with continuous flow melt systems, creating
opportunities to investigate climate variability at even finer resolution.
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Large databases of modern isotopic observations are ushering in a new era of global water cycle
investigations, enabling new developments in process-oriented studies across large geographic areas, more
robust validations of isotope-enabled model simulations, and improved reconstructions of past climate.
Several observational databases have paved the way, including the WISER water isotopes database, which
includes river water and precipitation data from the foundational Global Network of Isotopes in
Precipitation (GNIP) program, and the Goddard Institute of Space Studies (GISSs) Global Seawater δ18O
database (Rozanski et al 1993, Schmidt 1999, LeGrande and Schmidt 2006). A large number of new water
isotope observational datasets have since been produced, which have been incorporated into numerous
databases, including the Water Isotopes Database (Putman and Bowen 2019), which is merging with IsoBank
(Pauli et al 2015, 2017), the Stable Water Vapor Isotope Database (Wei et al 2019)), the CISE-L’OCEAN
Seawater Isotope Database (Reverdin et al 2022) and the PAGES CoralHydro2k Seawater Isotope Database
(expected in 2023, DeLong et al 2022). In addition, the EarthChem geochemical data repository has recently
been expanded to facilitate the archival of seawater isotope datasets with standardized metadata, and allows
researchers to obtain DOIs for submitted seawater isotope records (DeLong et al 2022). For a more detailed
review of current observational isotope databases we refer the reader to (Bowen et al 2019).

2.2.3. Advances in modeling the future
Water isotope modeling efforts have expanded at a similarly rapid pace, reflecting the growing valuation of
isotopic tracers for improving climate model physics, chemistry, and biology and their unique contributions
to improving paleoclimate reconstructions from proxy records. Isotope-enabled models now include not just
atmosphere-only and fully-coupled GCMs, but also regional-scale models (Sturm et al 2005, Pfahl et al 2012,
Stevenson et al 2015, Yoshimura and Kanamitsu 2010), cloud-resolving models, and large-eddy simulations
(Blossey et al 2010, Moore 2016, Smith et al 2006, Lee et al 2012, Torri 2022; see Box 2, Bailey et al 2021).
Higher resolution models are an important tool for process-level studies and can be used to (dynamically)
down-scale GCM results to aid in the interpretation of paleoclimate proxies collected at specific locations. In
some cases, high-resolution models are necessary to simulate smaller-scale atmospheric phenomena such as
the mesoscale organization of convection, shown to influence isotope ratios in some proxy archives (Maupin
et al 2021). Finally, water isotope enabled simulations are poised to generate significant understanding of
future anthropogenic changes to the global hydrological cycle and atmospheric circulation. Incorporation of
stable water isotope tracers in simulations spanning the 21st century, for example, could elucidate the Walker
Circulation’s response to tropical Pacific warming (e.g. Dee et al 2018a), changes in moisture supply to
atmospheric river events (Nusbaumer and Noone 2018), shed light on how climate change affects low-cloud
and vertical mixing feedbacks in climate models (e.g. Hu et al 2022), and help quantify changes in moisture
transport length scales across the mid-latitudes and Arctic (Singh et al 2016b, Bailey et al 2019).

2.2.4. Water isotopes as a tool to merge data spanning the past, present, and future
Given these recent developments in our ability to measure isotope ratios across space and time, the
integration of water isotopes in models of various resolution and complexity, and improved access to both
modern and paleoclimate records through continued reconstruction efforts and improved archival practices,
this is an opportune moment for the scientific community to take advantage of the full potential of water
isotope tracers to tackle both long-standing questions and emerging grand challenges central to
understanding and predicting climate change.

3. Climate variability through a water isotope lens

Water isotopes have profoundly informed our understanding of climate variability in both the recent and
distant past, providing a means to detect external climate forcing and distinguish it from internal variability.
New insights into climate system dynamics have also emerged as the amount of past and modern water
isotope observations has increased and data-model intercomparisons have become more sophisticated. In
this section, we review the latest advances in our understanding of climate variability and change that have
been facilitated by both modern water isotope data and water isotope-based paleoclimate records, from
timescales ranging from orbital to seasonal. In particular, these data have led to:

• Improved understanding of climate variability on a range of timescales and its connection to changes in the
large-scale circulation of the atmosphere and ocean

• Greater insight into how climate responds to major external forcings, including orbital, volcanic, and
anthropogenic forcings

• Better understanding of the dynamics underlying these climate variations and their associated global tele-
connection patterns

8
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We present our discussion of past climate variability by timescale purely for ease of organization. Note
that essentially all proxy systems span and/or are measured across multiple timescales (e.g. ice cores are
measured and capture climate changes at sub-annual to decadal and longer intervals, depending on
accumulation rates). Thus, readers should be aware that the assignment of various paleoclimate proxy
systems to one timescale is not a comprehensive representation of the literature and climatic understanding
retrieved from each proxy type.

3.1. Orbital to centennial timescales: abrupt climate change andmonsoon dynamics
Records of stable oxygen and hydrogen isotope values from ice cores, marine sediments, and speleothems
have provided much of our understanding of orbital- to centennial-scale variability in the climate system.
Because of the long, continuous nature of these proxy records, they provide a means to identify internally
and externally driven modes of climate variability on a wide range of timescales. Their interpretations have
substantially evolved and become more nuanced over time. In particular, informed by studies based on
model and modern in-situmonitoring data, these isotopic records are able to provide crucial information on
elements of large-scale oceanic and atmospheric circulation and global hydrologic change.

3.1.1. Ice cores
Ice cores constitute our most direct archive of past precipitation, modified by post-deposition processes.
Long polar ice core δ18O and δ2H records from Greenland and Antarctica—spanning thousands to hundreds
of thousands of years—have provided foundational constraints on the timing of glacial and interglacial cycles
and their orbital pacing (see review by Brook and Buizert (2018)). They have provided key insights into the
temporal relationships between greenhouse-gas forcing and temperature (e.g. Knutti et al 2004, EPICA
Community members 2006). And, they are one of several water isotope proxies that have helped characterize
periods of abrupt climate change, including Dansgaard–Oeschger (DO) events—characterized by a rapid
warming of the Northern Hemisphere, followed by gradual cooling—and Heinrich events, or cooling events
in which large freshwater inputs into the North Atlantic from melting ice sheets alter the density-driven
thermohaline circulation of the ocean (Grootes et al 1993, EPICA Community members 2004, Jouzel and
Masson-Delmotte 2007, Landais et al 2018).

Ice core stable isotope records have been viewed traditionally as a local paleothermometer, since isotopic
fractionation is sensitive to the temperature at last saturation—in this case, the temperature of condensation
near the ice accumulation region. While this interpretation is not exact, data assimilation analyses,
theoretical modeling, and GCM experiments suggest that it is a useful concept (Jouzel et al 1997,
Masson-Delmotte et al 2008, Noone 2008, Steiger et al 2017, Brook and Buizert 2018).

Continued research, leveraging modern observations and isotope-enabled simulations, has created a
more nuanced understanding of isotopes as indicators of past shifts in moisture source and moisture cycling.
Recent analyses of ice core records fromWest Antarctica, for instance, have used isotopic information to
elucidate the coupled atmosphere-ocean response to DO events. Using the distinct phasing of δ18O records
from Greenland and δ18O and d-excess records from Antarctica, these critical records have demonstrated
that DO events are characterized by a rapid equatorward shift in the moisture source for Antarctic
precipitation. These shifts occur as the atmospheric circulation responds to Northern Hemisphere warming
and the Intertropical Convergence Zone migrates north (Markle et al 2017). The fast dynamic response of
the atmosphere is followed by a slower warming, driven by Southern Hemisphere sea surface temperatures,
that lags by about 200 years. Other studies have suggested a role for Southern Ocean temperatures in
influencing the strength of the Atlantic Meridional Overturning Circulation, or AMOC, and thus the
duration of DO warm periods (Buizert and Schmittner 2015). Isotopic data thus elucidate the distinct yet
linked timescales over which the atmosphere and ocean respond to and influence abrupt climate changes.

Water isotope records have also demonstrated important shifts in the moisture source of Arctic
precipitation during DO events (Sime et al 2019). Data from Greenland ice cores, in conjunction with model
simulations, for example, show that seasonal precipitation isotope ratios and seasonal precipitation amounts
vary independently—a clear example of water isotopes providing additional constraints beyond what basic
hydrological variables provide. These findings suggest sea ice loss during DO events increases the proportion
of Greenland precipitation that originates from local oceanic evaporation. Moreover, these shifts in
evaporative source help establish the positive, albeit heterogeneous, δ18O-temperature relationship across
Greenland. The importance of evaporative site changes to the hydroclimate state has emerged as a prominent
theme in other modeling experiments that include water isotopic tracers, or that ‘tag’ and explicitly track
moisture that has evaporated from predefined regions, both for the Arctic and Antarctic (Noone 2004, Singh
et al 2016a, 2016b, Nusbaumer and Noone 2018, Siler et al 2021).

In addition to recording abrupt changes in mean climate state and associated mean moisture source
patterns, long, high-resolution ice core records have also been used to identify abrupt changes in the
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variability of the climate system through spectral analyses (e.g. Jones et al 2018, Grisart et al 2022). Careful
dating of the timing of these changes, matched with other paleoclimate archives (e.g. speleothems), can
isolate likely drivers for subsequent evaluation in numerical model experiments. This approach has helped
reveal the importance of northern hemisphere ice sheet topography in influencing the zonal position of deep
convection in the tropical Pacific, which, in turn, modifies Southern Hemisphere high-latitude stationary
eddies via Rossby wave trains (Jones et al 2018). Other studies, using multi-proxy syntheses combined with
model simulations, reinforce the importance of ice sheet extent in controlling tropical hydroclimate
variability (DiNezio and Tierney 2013, DiNezio et al 2018, Windler et al 2020). DiNezio and Tierney (2013),
for instance, argued that resultant variations in sea level and, ultimately, continental shelf exposure during the
Last Glacial Maximum (LGM) (∼40kyr ago) inhibited moisture convergence and dried the western Pacific
Warm Pool. These findings not only indicate that isotopic records provide critical insight into changes in the
general circulation, but they also emphasize the importance of accurately representing ice sheet dynamics so
that the effects of sea level rise are incorporated accurately into projections of future atmospheric circulation.

Inverse correlations between ice core aerosol concentrations and δ18O provides further evidence that ice
core isotope records reflect variations in global circulation patterns. Markle et al (2018) interpreted this
anti-correlation as showing that as atmospheric circulation slows, in response to a weaker meridional
temperature gradient, precipitation intensifies globally, effectively scavenging the atmosphere of dust, sea
salt, and other particles. The idea that dust accumulation in ice cores is regulated by the global hydrologic
cycle, rather than changes in source emissions, represents a major shift in perspective (see Fischer et al 2007).
However, the sensitivity of Antarctic isotope records to the general circulation is supported by modern
observations and modeling studies (Noone 2008), and modern isotopic observations support the covariance
between precipitation scavenging and aerosols (Bailey et al 2015). Knowledge gained about such covariant
processes from ice cores creates valuable opportunities to test the coupling between components of today’s
Earth system models and how these components respond jointly to change.

3.1.2. Speleothems
Speleothem calcite formation in karst environments provides a wide range of climate information on
timescales ranging from decades to hundreds of thousands of years (see review by Lachniet 2009, Cheng et al
2016). As groundwater drips into caves, the calcite that precipitates from the dripwater forms the
speleothem; its δ18O record thus represents a smoothed time series of amount-weighted precipitation isotope
ratios from the local region—with less smoothing in wetter environments, where rainwater flushes
groundwater reservoirs more frequently (e.g. Moerman et al 2014). The environmental conditions of the
cave can also affect the calcite δ18O but, again, are less important in wetter regions. These and other details
are discussed in considerable detail in (Lachniet 2009).

Because of the strong connection to precipitation δ18O, speleothems formed at low latitudes provide a
means to study the dynamics controlling the strength and seasonality of monsoons, their role in global
hydroclimate, and their sensitivity to external and internal forcings. Once considered indicators of
monsoonal precipitation amount, speleothem δ18O records are now frequently interpreted as reflecting
variations in atmospheric circulation and its associated impacts on moisture source, moisture transport, and
upstream water cycling—with changes in source encompassing both the location and thermodynamic
conditions of the evaporation site (e.g. Pausata et al 2011, Battisti et al 2014, Chen et al 2016, Hu et al 2019).
Multi-proxy syntheses (e.g. DiNezio and Tierney 2013, DiNezio et al 2018), modern precipitation
collections, and isotopically-enabled modeling experiments (e.g. LeGrande and Schmidt 2009, Chiang et al
2015, 2020, Hu et al 2019) have greatly enhanced our ability to resolve this more nuanced picture of
monsoon dynamics. Indeed, simulations combining isotopic tracers and water tags have even made it
possible to distinguish the individual effects of source, transport, and cycling on the South Asian and East
Asian Summer Monsoons (SASM, EASM) (Tabor et al 2018, Hu et al 2019). While earlier papers emphasize
the importance of upstream rainout (e.g. Liu et al 2014, Cai et al 2017), more recent analyses suggest shifts in
source location dominate the EASM hydroclimate response (Hu et al 2019, Chiang et al 2020), providing a
useful analogy for thinking about evaporative site changes with anthropogenic warming (see Singh et al
2016b). That said, these analyses remind us that hydroclimate variations seldom occur in isolation, especially
when they are tightly linked to large-scale circulation changes and global energetics.

Some of the most coherent variability across speleothem records is caused by the wobbling of Earth’s axis,
or precession, and its impact on summer insolation, which modifies meridional temperature gradients, the
position of the ITCZ, and the strength of subtropical highs (Hai et al 2012, Battisti et al 2014, Liu et al 2014).
Both the Asian Monsoon and South American Summer Monsoon are stronger when summer insolation is
high. However, millennial-scale forcings, such as meltwater pulses associated with Heinrich events and DO
events, also imprint strongly on speleothem records (see also section 3.1.1, Hai et al 2012, Liu et al 2014).
Since these events correspond with changes in the AMOC, they provide a useful lens through which to
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examine and benchmark simulations of ties between polar change and tropical climate. For example,
freshwater inputs into the North Atlantic associated with Heinrich events slow the AMOC, resulting in
Northern Hemisphere cooling. This increases the meridional temperature gradient—just like when summer
insolation is low—causing the Inter-Tropical Convergence Zone (ITCZ) to contract southward and alter
hydroclimate across the tropical belt. The opposite occurs when AMOC strengthens. This coherent tropical
response supports the idea of a Global Monsoon governed by seasonal changes in atmospheric circulation on
multiple timescales (Hai et al 2012, Battisti et al 2014, Trenberth et al 2006). Moreover, high-resolution
records make it possible to precisely identify the timing and duration of tropical hydroclimate shifts relative
to high-latitude temperature changes and meltwater pulses over multi-decadal to millennial timescales—for
example, linking speleothem records from Borneo (Carolin et al 2013) and East Asia (Rhodes et al 2015) to
Greenland ice core reconstructions.

Despite the importance of high-latitude change in influencing low-latitude climate, speleothems and
multi-proxy studies suggest localized tropical changes can also play a significant role in regulating individual
monsoon systems (e.g. Cruz et al 2009). For example, Liu and Battisti (2015) found that during low summer
insolation periods (and Northern Hemisphere cooling), the southward movement of the Atlantic ITCZ is
enhanced by the strengthening of the African winter monsoon, which, in turn, is induced by anomalous
north African cooling. Similarly, Jian et al (2022) argued that upper ocean heat convergence in the
Indo-Pacific Warm Pool accompanies surface wind changes during high summer insolation periods. The
resulting rise in ocean heat content enhances northward latent heat transport and provides a coupled
atmosphere-ocean link between the Asian Monsoon, ENSO, and the Indian Ocean dipole (IOD) (see
section 3.2 for more on modes of climate variability).

Recent water isotope work has also revealed a key role for the mid-latitude jet in influencing the Asian
Monsoon, particularly its East Asian component (Chiang et al 2015, 2020, Zhang et al 2018). Like the ITCZ,
the jet responds to meridional temperature gradients, and its position influences how westerly winds interact
with the Tibetan Plateau, generating stationary eddies downstream. When the temperature gradient is strong
(e.g. during low summer insolation or glacial periods), the westerlies tend to remain south of the plateau,
blocking low-level southerly flow, which otherwise carries highly cycled, low δ18Omoisture toward NE
China in summer (see Liu et al 2014). The mean EASMmoisture source change, as does the speed with
which the moisture source rotates counterclockwise from the south toward the Pacific, shortening
characteristic stages of the monsoon’s development. Associated variations in the progression and reach of the
main monsoon rainbelt are captured by the geographic diversity of isotopic signals in speleothems and
modern Asian precipitation (Liu et al 2020). The jet position thus regulates the seasonality of EASM
precipitation (Chiang et al 2020), providing a unique benchmark for models aiming to simulate seasonal
shifts in monsoonal dynamics and even jet position.

3.1.3. Marine sediments
The oxygen isotope composition of the carbonate shells of marine microfauna (principally foraminifera and
also coccolithophores) that are preserved in marine sediments provide some of the most foundational
records of past climate variations spanning the last ~100 million years (e.g. Zachos et al 2001, Westerhold
et al 2020). These records have been critical in establishing the close coupling between global temperature,
ice volume, sea level, and atmospheric greenhouse gas concentrations on glacial/interglacial timescales
(Imbrie et al 1992, Lisiecki and Raymo 2005). When calcium carbonate is crystallized slowly in water under
equilibrium conditions, 18O is slightly concentrated in the carbonate relative to the water. This process is
temperature dependent, with the fractionation factor decreasing as temperature increases (Urey 1947).
Oxygen isotopes in marine carbonates thus provide a record of past temperature and seawater δ18O
variations (the latter of which covaries with global ice volume in shells of deep sea-dwelling benthic
foraminifera). This relationship has led to the establishment of δ18O in marine carbonates as one of the most
widely used tools in paleoclimatology.

The partitioning of trace elements such as Mg into carbonate minerals is also a function of temperature,
and Mg/Ca ratios in calcitic foraminifera have been widely applied as a paleotemperature proxy since the
mid-1990s (Nuernberg 1995). Paired Mg/Ca and δ18Omeasurements in foraminifera permit the explicit
reconstruction of both temperature and seawater δ18O variations. In surface-dwelling (planktonic)
foraminifera, δ18O values are sensitive to surface water fluxes (precipitation and evaporation) and ocean
mixing via their impacts on seawater δ18O. Such paired analyses in planktonic foraminifera are thus a
valuable way of assessing past hydroclimate variability and its response to forcing on centennial to orbital
timescales (e.g. Lea et al 2000, Arbuszewski et al 2013, Jacobel et al 2016).

Marine sediments also contain organic matter from photosynthesizing organisms that serve as important
records of past hydroclimate change. Organic hydrogen preserved in marine sediments serves as a proxy for
past hydroclimate changes, as lipid δ2H values derived from photosynthesizing organisms record variations
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in δ2H of their environmental waters (since water is the primary hydrogen source of photosynthesizing
organisms and their biosynthetic products). The hydrogen isotopic composition of aquatic and terrestrial
lipids in marine sediments provide reconstructions of seawater δ2H (e.g. Pahnke et al 2007) and precipitation
δ2H (Tierney and deMenocal 2013), respectively. Hydroclimate reconstructions derived from the leaf waxes
of terrestrial plants have provided a variety of key insights into past hydroclimate variations, including the
identification of wet-to-dry transitions in tropical Africa over the past several thousand years the intensity,
onset and duration of the green Sahara (Tierney et al 2017b) and potential climate forcing of migrations out
of Africa∼200,000 years ago (Tierney et al 2017a). At higher latitudes, leaf wax reconstructions have been
used to evaluate forced changes in modes of climate variability like the North American Monsoon during the
Pliocene and LGM (Bhattacharya et al 2017, 2022) and polar climate variability during the Holocene
(Corcoran et al 2021).

3.2. Centennial to interannual timescales: modes of climate variability and their teleconnections
On shorter, interannual-to-centennial timescales, water isotope-based records have provided critical
information on the behavior of large-scale coupled modes of climate variability. Sources of isotopic
information on these timescales include high-resolution (up to seasonal and sub-seasonal) proxy
reconstructions using terrestrial and marine archives, as well as direct observations of isotopes in
precipitation and seawater. Because of their higher temporal resolution, these isotopic data can be readily
compared with results from isotope-enabled simulations of the ocean and atmosphere and other high
resolution paleoclimate reconstructions, such as annual temperature reconstructions spanning the last
2000 years.

3.2.1. Lake sediments
On land, lake sediment records are an important source of high resolution (typically decadal to centennial)
paleo-hydroclimatic information that spans centuries to millennia. As lakes have a global distribution, from
the tropics to the high latitudes, such records provide crucial terrestrial water cycle information when other
proxy archives, such as trees and ice, are not available. Hydroclimate reconstructions have been derived from
a range of disparate isotope proxies in lake sediments, including the δ2H values of aquatic and terrestrial
lipids (Sachse et al 2012), the δ18O values of authigenic and biogenic carbonates (e.g. Hodell et al 1991, Leng
and Marshall 2004, Zhang et al 2011, Bhattacharya et al 2015, Wyman et al 2021), the δ18O values of the
siliceous frustules of diatoms (Dodd and Sharp 2010) and the δ18O, δ17O, and δ2H values of gypsum
hydration waters (Evans et al 2018). The unique combination of robust age control (up to annual resolution
when annual sediment laminae, or varves, are present), along with the numerous other physical,
geochemical, and biological measurements that typically accompany stable isotope measurements from lake
sediments, renders lake sediment isotope records especially valuable as indicators of past climate and
environmental change.

Although the temperature dependence of isotope fractionation between lake water and carbonate imparts
a temperature signal in lake carbonate isotope values, stable isotope measurements from lake sediments are
more commonly interpreted as proxies for the δ2H and δ18O values of lake water (Ito 2001; Leng and
Marshall 2004). In turn, these lake water isotope values reflect the balance and isotopic values of inputs into a
lake system, namely precipitation, runoff, surface inflow and groundwater inflow, and outputs from the lake
system, which include evaporation, runoff, surface outflow and groundwater outflow (Gonfiantini 1986, Gat
1995). If supplied with constraints on these values, isotope mass-balance hydrologic modeling can be used to
improve understanding of the climatic signals archived in lake sediment isotope values (Gibson et al 2015).

Lakes without surface inflow or outflow, or closed basin lakes, simplify this mass balance, and thus are a
frequent focus of paleolake studies (Talbot and Kelts 1990). In these studies, isotope records are frequently
interpreted as reflecting precipitation minus lake water evaporation (Leng and Marshall 2004). One recent
methodological advance of note used a lake catchment isotope mass balance model to demonstrate the
predominance of precipitation in setting lake δ18O values in the Pacific Northwest (Steinmann et al 2013).
Given the extra degree of freedom provided by isotopic data, variability in precipitation isotope values are
also often implicated in driving lake water isotope variability (e.g. Richey and Sachs 2016). Additionally,
proxy system modeling for lake sediment isotope proxies have also been developed for the community in
recent years, for both carbonate δ18O and leaf wax δ2H values (Jones et al 2018, Dee et al 2018b, Konecky
et al 2019). Such process-based approaches permit more nuanced inquiries into the drivers of lake
sediment-based δ18O and δ2H values.

Lake sediment isotope records are a temporal ‘bridge’ between longer records of orbital climate
variability and shorter proxy archive records that capture seasonal to interannual timescales. The
sedimentation rates of most lakes produce records that are decadally to multi-decadally resolved, but
interpretations of annual variability are possible, if varves (annual laminae) are present. Recently, stable

12



Environ. Res.: Climate 2 (2023) 022002 S Dee et al

isotope records developed from lakes in ‘gold’ locales, sensitive to particular modes of the climate system, as
well as networks of stable isotope records have been used to reconstruct the history of large-scale features and
modes of the climate system. In the tropics and subtropics, salient examples include interpretations of shifts
in ENSO frequency and intensity (Atwood and Sachs 2014, Yamoah et al 2016, Rodysill et al 2019) the
meridional location of the ITCZ (Konecky et al 2013, Richey and Sachs 2016), Pacific Walker Circulation
strength changes (Konecky et al 2013, Wyman et al 2021), as well as numerous records of past monsoon
circulation variability (e.g. Zhang et al 2011, Anderson 2012, Bird et al 2011, Dixit et al 2014). In the
mid-latitudes of the Northern Hemisphere, lake sediment isotope records have provided evidence of drought
and pluvials resulting from past multidecadal variability in the Pacific North American (PNA) pattern (Bird
et al 2017), and the North Atlantic Oscillation (NAO) (Diefendorf et al 2006, Auger et al 2019, Zhao et al
2022a). In the mid to high latitudes of the Southern Hemisphere, lake sediment isotope records have been
applied to track westerly wind shifts (Moy et al 2008). In sum, lake sediment isotope records provide valuable
information on major climate modes over past centuries to millennia that capture the high degree of natural
variability inherent in the climate system and water cycle.

3.2.2. Corals
The majority of water isotope-based reconstructions on interannual to multidecadal timescales are derived
from the stable isotope measurementsof ice cores and coral skeletons, with the latter providing records that
cover the last several millennia in tropical locations such as the central equatorial and southwest Pacific (see
review by Thompson, 2022). Many coral species precipitate aragonite skeletons, with annual banding similar
to tree rings. Variations in sea surface temperature exert a first-order control on the coral aragonite δ18O, but
a secondary and critical control is the ambient seawater δ18O during coral growth. The relative balance of
temperature and seawater δ18O influences on coral records varies widely across tropical ocean basins and
depends on the relative magnitudes of sea surface temperature and seawater δ18O variability, as well as their
covariance, in the location of coral growth (Russon et al 2013, Thompson 2022).

Because seawater δ18O depends on both surface freshwater fluxes and advection or mixing of oceanic
water masses (Stevenson et al 2015, 2018, Conroy et al 2017, LeGrande and Schmidt 2006), coral records
with stronger sensitivity to seawater δ18O create opportunities to evaluate past ocean circulation (e.g. Conroy
et al 2023), much as proxies recording precipitation δ18O provide a means to evaluate past atmospheric
circulation (LeGrande and Schmidt 2006). Moreover, with seawater δ18O and salinity both sensitive to
freshwater inputs—and salinity strongly correlated with large-scale changes in evaporation and precipitation
(e.g. Durack et al 2012)—some coral δ18O records are well-suited for evaluating changes in salinity and
large-scale atmospheric moisture balance (Reed et al 2022, Thompson et al 2022). Given the need for
improved constraints on regional patterns of both ocean temperature and hydrology, the practice of
separating the temperature component of the coral isotope signal from the seawater δ18O component, by
pairing the coral δ18O with Sr/Ca temperature proxies, has become increasingly common (McCulloch et al
1994, Walter et al 2022).

Because of where they grow and their high growth rates, coral isotope records have proven particularly
useful for reconstructing the past interannual behavior of tropical climate, including one of the most globally
important modes of variability, ENSO (Cobb et al 2013). While evidence from long coral reconstructions
suggests anthropogenic warming is indeed leaving a mark in coral networks across the western Pacific,
western Atlantic, and Indian Oceans (PAGES Oceans2k, Tierney et al 2015, Thompson 2022), one especially
salient finding is that ENSO variability may be increasing with anthropogenic forcing (Cobb et al 2013, Li
et al 2013, Grothe et al 2020, Zhu et al 2017)—a finding that is also substantiated by East Antarctic ice core
records from the past five centuries (Rahaman et al 2019). Corals from the central Pacific suggest that
ENSO’s variance over the last 50 years is 25% stronger than it was over the [last millennium (Grothe et al
2020). Other high-resolution coral reconstructions studies have provided evidence for multi-decadal changes
in ENSO variability over the last millennium (e.g., Lawman et al 2020). Millennial analyses of Indian Ocean
coral δ18O suggest that the IOD has also become more variable and that positive IOD events have become
more intense in recent decades (Abram et al 2020); broadly speaking, such long records indicate an
important coherence between Pacific and Indian Ocean variability.

In addition to revealing changes in ENSO intensity, coral networks have provided insight into the
changing ‘flavors’ of El Niño events. Central Pacific El Niños—events which tend to be weaker and centered
farther west—are contribute to drought conditions in south Asian monsoon regions (Kumar et al 2006),
among other important distinctions from their Eastern Pacific counterparts in terms of teleconnection
impacts. Analyses of corals over the past four centuries suggest that Central Pacific El Niños may have
become more frequent compared to Eastern Pacific El Niños during the 20th century (Freund et al 2019).
However, Central Pacific El Niños do not appear to have become more intense in the way that Eastern Pacific
El Niños have (Freund et al 2019, Grothe et al 2020). Beyond changes in interannual variability, ensembles of
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coral δ18O records can also capture longer climate trends, such as 20th century warming and freshening
trends in the tropical Pacific (Hitt et al 2022).

Finally, while providing long records on tropical hydroclimate change, coral δ18O also provides
information about ENSO’s response to short-term forcings. Dee et al (2020), for example, used
monthly-resolved coral records from the central Pacific to show that the ENSO response to volcanic forcings
appears to be weaker than previously suggested by tree ring-based proxy synthesis products—a finding that
stands in direct contrast to many model simulations.

3.2.3. Tree ring cellulose
The cellulose of tree ring wood expands paleoclimate information from tree rings, providing rich water
isotope hydrology information with seasonal-to-annual resolution (McCarroll and Loader 2004, Schubert
and Hope Jahren 2015). The isotopic composition of the soil and xylem water, evapotranspiration during
photosynthesis, and isotopic back-diffusion between the leaf/needle and xylem water all contribute to the
final measured δ18O signal. Thus, tree ring cellulose oxygen isotopes may commingle variations in
precipitation, evaporation, and soil and groundwater processes (Roden and Ehleringer 2000, Roden et al
2000, 2002, Anderson et al 2002, Barbour et al 2002, Evans 2007)

Wood cellulose reconstructions have enabled high-resolution paleoclimate reconstructions in tropical
latitudes, where other proxy data at annual resolution are generally sparse. Reconstructions using tree ring
width, for example, rely on strong seasonality, which is often absent at low latitudes. By contrast, the oxygen
isotope composition in wood cellulose houses information about changes in the δ18O of precipitation,
capturing changes in wet- and dry-season rainfall and moisture supply. The δ18O of wood cellulose has been
used to explore hydroclimate and ENSO variability (Boysen et al 2014) in the tropical Americas (Anchukaitis
et al 2008, Anchukaitis and Evans 2010, Rodriguez-Caton et al 2022) and in Southeast Asia (Chenxi et al
2011, Zhu et al 2012). Cellulose reconstructions have also been used to capture high-resolution changes in
the Asian Summer Monsoon system (Xu et al 2018). These records broadly indicate that stable oxygen
isotopes in cellulose are dominated by interannual hydroclimate variability rather than by large global
warming trends, and the seasonal resolution of these records accurately captures both wet and dry periods
associated with extreme ENSO events and record monsoon years, often tied to both human and ecological
perturbations (e.g. Anchukaitis and Evans 2010). Long reconstructions from multiple oxygen isotope
chronologies offer evidence for a post-industrial weakening of the Indian Summer Monsoon (Xu et al 2018).
Given recent advances in extraction methodology (Andreu-Hayles et al 2019, Switsur and Waterhouse
n.d.2020), oxygen isotopes in tree wood cellulose have proven to be powerful tools for capturing past
hydroclimate extremes (e.g. drought, pluvials) on seasonal-to-interannual timescales (Zhao et al 2022b,
Szejner et al 2021, Nagavciuc et al 2022).

3.2.4. Ice cores
Ice cores with annual and sub-annual resolution have provided critical context for rates and amplitudes of
anthropogenic climate change at high latitudes and polar amplification (as summarized in Jones et al 2001,
Thompson et al 2003, Abram et al 2013, and many others). For example, recently, Hörhold et al (2023), used
water isotopes in ice cores to demonstrate that current temperatures in central Greenland exceed those of any
other time in the last millennium.

High resolution ice core data also help elucidate the dynamical conditions that enhance the strength of
tropical-polar teleconnections associated with modes of climate variability like ENSO (Patterson et al 2005,
Schneider et al 2012, Crockart et al 2021). Indeed, many West Antarctic isotope records are broadly
correlated with tropical SSTs on multi-year timescales (Schneider and Steig 2008, Okumura et al 2012).
During the positive phase of ENSO, mid-latitude eddies, including the polar jet stream, tend to weaken
(Xichen et al 2021). This reduces vertical mixing and advection of evaporated water from the mid-latitudes
and creates stronger moisture dependencies between the tropics and the poles (Noone 2008). Moreover, as
tropical deep convection shifts eastward, Rossby wave trains develop, whose downstream high pressure
anomalies alter warm air advection near the West Antarctic coast (Okumura et al 2012, Jones et al 2018,
Xichen et al 2021). Specifically, it is the zonal position of convection that appears to influence the efficacy
with which the waves permeate mid-latitude wind barriers and propagate poleward. These teleconnections
highlight the correlations between high polar isotope ratios, high polar temperatures, and weakened global
circulation during El Niño events.

Other modes of variability regulate the strength of these correlations. For instance, West Antarctic ice
records from the first half of the 20th century show an anomalously large positive shift in isotope ratios
associated with the 1939–1942 El Niño, which occurred during a period in which the Southern Oscillation
Index (SOI) was in phase with the Southern Annular Mode, or SAM (Schneider and Steig 2008)—the
dominant mode of high-latitude circulation variability in the Southern Hemisphere. (Gregory and Noone
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2008) argued that even though SOI and SAM have opposing effects on West Antarctic isotope ratios, the two
patterns of variability must be positively correlated in order for ENSO teleconnections to reach the poles
effectively. Other studies have demonstrated qualitatively similar teleconnection sensitivities to SAM in other
Antarctic locations (Fogt and Bromwich 2006, Kino et al 2021). Ice core isotopic records thus provide two
important opportunities. First, they reinforce the idea that models must accurately simulate tropical climate
and its teleconnections in order to predict Antarctic temperature and sea ice changes (Steig et al 2013,
Holland et al 2019). Second, they provide an opportunity to test our understanding of how the strength and
position of tropical SSTs influence mid- and high-latitude circulation anomalies and the ability of Rossby
wave trains to reach higher latitudes.

Low-latitude ice core isotopic records, such as from the Quelccaya ice cap in Peru(well-known for its
strong 19th–20th century anthropogenic trend, Thompson 2000, Thompson et al 2003) also record higher
δ18O values during El Niños (Thompson and Mosley-Thompson 2013, Thompson et al 2017). Multi-year
snow sampling and modeling efforts have confirmed that these signals are the result of changes in the South
American Monsoon, which reduce precipitation over the Amazon and allow a greater proportion of
isotopically heavy water to reach the western Amazon and high Andes (Hurley et al 2019b).

3.2.5. Modern water isotope observations
As modern water isotope observations—including precipitation samples and remote-sensing
retrievals—grow in number, they are becoming increasingly used to evaluate modes of climate variability
and their teleconnections. Through the GNIP, precipitation collections extend back to the 1960s in some
locations, and remotely sensed H2HO-H2O pairs are available from the early 2000s onward (see Section
2.2.2). These records provide both higher temporal resolution and greater spatial coverage than proxy
networks. They also extend our ability to investigate teleconnection patterns to many mid- and high-latitude
locations. Examples include the PNA pattern (Birks and Edwards 2009, Liu et al 2011, 2013, Liu et al 2014);
the NAO (Sodemann et al 2008), ENSO and the IOD (Sutanto et al 2015, Dee et al 2018a, Moerman et al
2014, Moerman et al 2013).

In addition to capturing interannual variations in tropical Pacific dynamics associated with ENSO, water
isotopic information has been used to study variations in the strength of the Walker Circulation on decadal
timescales (Dee et al 2018a, Falster et al 2021). Indeed, (Dee et al 2018a) used simulations to show that as the
Walker Circulation slows, δ2H in the mid-troposphere decreases in the west Pacific (the region of large-scale
upward motion) and increases in the east Pacific (the region of large-scale subsidence), capturing the
changing vertical mass flux. Falster et al 2021 subsequently showed that the changing water vapor signal
leaves an imprint on local precipitation isotope ratios, which can be detected across the Pacific basin.

3.3. The common era: internal variability from global proxy compilations
Using water isotope-based proxies to better constrain water cycle processes has not only improved our
understanding of large-scale dynamics, teleconnections, and the general circulation; it has also greatly
improved temperature reconstructions over the Common Era (PAGES 2k Consortium 2013, PAGES
2k-PMIP3 group 2015, Jungclaus et al 2017, Mann 2021). These reconstructions place today’s
anthropogenically-forced climate & temperature changes within the important context of centuries of
inherent variability. Such Paleo-DA reconstructions—which fuse the dynamical information of climate
models with annually resolved proxy information spanning the last 2000 years using offline data assimilation
(e.g. Steiger et al 2014)—has resulted in proxy-constrained products such as the Last Millennium Reanalysis
Project (Hakim et al 2016) and the Paleo Hydrodynamics Data Assimilation (PHYDA, Steiger et al 2018).
Both LMR and PHYDA provide gridded multivariate and dynamically consistent climate reconstructions
spanning from 1 to 2000 C.E. PHYDA specifically reconstructs global hydroclimate using over 2000 proxies,
including hydroclimate-sensitive water isotope records.

Such reconstructions provide an important benchmark for GCM-simulated internal variability. For
instance, recent analyses show that simulations tend to agree with reconstructions on the amplitude of
unforced global-mean multidecadal temperature variability; this increases confidence in future projections
of climate change on these timescales (PAGES 2k Consortium 2019). Simulations and reconstructions are
also in broad agreement for Northern Hemisphere regions, but disagree in the Southern Hemisphere. These
discrepancies suggest that models may underestimate internal variability and produce too much regional
coherence. Alternatively, they may overestimate the Southern Hemisphere response to external forcing
(Goosse 2015, PAGES 2k-PMIP3 group 2015, Abram et al 2017, PAGES2k Consortium 2017). New studies
are now using global networks of water isotope proxy records (e.g. Iso2k, Konecky et al 2020) to provide
constraints on global water-cycle changes during the Common Era. These will provide an important check
on simulated relationships between global hydrology and global temperature from models (Atwood et al
2021). As discussed in section 4, our ability to precisely quantify climate variations in the past helps improve
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our ability to predict climate changes in the future and to identify anthropogenically-forced changes as they
emerge from the background of climate noise.

3.4. Seasonal to weather timescales: the MJO
Modern precipitation and water vapor isotope observations provide an opportunity to evaluate the
dynamical processes regulating higher frequency variability, including seasonal (Wright et al 2017, Feng et al
2009), intraseasonal (Berkelhammer et al 2012, Tuinenburg et al 2015, Hurley et al 2019a), and synoptic
variability (Noone et al 2011). In the tropics, the dominant mode of intraseasonal variability is the MJO,
which is characterized by the eastward propagation of mesoscale convective systems (MCSs) across the
Indian and tropical Pacific Oceans over a period of 30–90 days (Madden and Julian 1994). Understanding
this propagation remains a question of critical interest for extended-range weather and climate prediction,
since the MJO’s convective activity influences the timing and strength of monsoons (e.g. Lorenz and
Hartmann 2006, Lavender and Matthews 2009, Grimm 2019), the number and strength of tropical cyclones
(e.g. Maloney and Hartmann 2000), and the characteristics of extratropical circulation anomalies and
precipitation patterns (e.g. Higgins et al 2000, L’Heureux and Wayne Higgins 2008, Riddle et al 2013, Lukens
et al 2017, Lin and Brunet 2018, Barnes et al 2019, Franzke et al 2019).

The role of moist processes in helping generate and sustain the MJO has long been suspected (Madden
and Julian 1994). However, efforts to describe moisture’s role theoretically are more recent (Adames and Kim
2016). Isotopic investigations have contributed to our understanding mainly by identifying the moist
processes that define the distinct stages of the MJO (Kurita et al 2011, Berkelhammer et al 2012, Kurita 2013,
Tuinenburg et al 2015, Conroy et al 2016, Hurley et al 2019a), thus helping pinpoint the GCM physics critical
for MJO simulation.

Studies leveraging tropics-wide isotopic retrievals from satellites consistently identify four stages of
distinct moisture regimes (Berkelhammer et al 2012, Tuinenburg et al 2015, Hurley et al 2019a). These stages
occupy the four quadrants on a plot of isotope ratio versus specific humidity, indicating that the isotopic
observations contribute unique information in the identification of moistening and dehydrating processes
(Hurley et al 2019a). During the first stage of the MJO lifecycle, large-scale vertical mixing isotopically
enriches the lower free troposphere. During the second phase, development of shallow convection moistens
the free troposphere and pre-conditions the atmosphere for deep convection. In the third stage, during the
height of convective activity, minima in vapor isotope ratios indicate that rain re-evaporation plays a role in
sustaining organized convection by maintaining moisture aloft and facilitating cold pool formation.
Berkelhammer et al 2012 specifically suggested that both moistening by vertical mixing and drying by
large-scale circulation may be active during this period. Finally, in the fourth stage, large-scale drying occurs,
associated with subsidence and stratiform cloud formation.

To better understand the processes involved at the center of MJO convective activity, (Kurita 2013)
developed a simplified model that illustrates how rain evaporation and exchange processes within the
stratiform region of an MCS lower the water isotope ratio. Based on his analysis, he postulated that as each
MJO MCS develops, it entrains moisture that has been progressively depleted of isotopically heavy water by a
preceding storm, producing ever-more depleted precipitation. Rainfall collections from tropical islands
during MJO events support this hypothesis (Moerman et al 2013, Conroy et al 2016). These findings have
inspired a new direction of study into the relationship between rainwater isotope ratios and the proportion
of stratiform versus convective precipitation (Aggarwal et al 2016, Sun et al 2019, Chang et al 2020).
Collectively, these investigations suggest that water isotope ratios are a sensitive metric to the degree of storm
organization. Not only does this provide a valuable diagnostic for GCMs, which often parameterize
convection, but it also creates an exciting new lens through which to view paleoclimate archives. One recent
study has used water isotope data from speleothem records in Texas to argue that storm regimes across the
Southern Great Plains became stronger and more organized during glacial to interglacial transitions—a
finding that suggests they may also do so with anthropogenic warming (Maupin et al 2021).

4. Anthropogenic forcing, detection, and attribution

Water isotope-based proxies and modern measurements both have a critical part to play in helping us
understand how human activities are fundamentally changing the climate system and water cycle now and in
the future. While proxy archives inform temperature and hydroclimate reconstructions and provide
benchmarks for longer paleoclimate simulations, modern measurements allow us to evaluate our confidence
in GCM physics, and to refine our interpretation of proxies. Together, these observations are key for testing
predictions about which processes control the sensitivity of the climate system to radiative forcing changes,
and for detecting anthropogenically-forced changes against the climate system’s highly variable background.
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4.1. Climate sensitivity
Equilibrium climate sensitivity (ECS) measures a GCM’s warming response to a doubling of atmospheric
CO2 and has become a popular and important metric for describing our confidence in future warming
projections. Much of today’s divergence in ECS estimates stems from uncertainties in the parameterized
representation of cloud and precipitation processes (Sherwood et al 2020). Water isotope records thus
provide some of our most informative constraints on climate sensitivity. One way to evaluate climate
sensitivity is to assess whether models are able to reproduce the precipitation and oceanic isotope ratios
inferred from proxy records from periods whose greenhouse gas forcing and mean climate states are far
different from today’s (Sherwood et al 2020, Tierney et al 2020). For example, (Zhu et al 2022) used
paleoclimate reconstructions from the LGM to tune the cloud microphysics scheme of the Community Earth
System Model (CESM). By removing a cap on cloud ice number and modifying the scheme’s timestep in
order to make simulations consistent with LGM records, they lowered the model’s ECS, proving that current
estimates using standard configurations are too high. Similar analyses with CESM have isolated cloud
feedbacks as key drivers of high climate sensitivity in simulations of the Eocene (Zhu et al 2019). Other
studies working with the NASA GISS model have worked to refine climate sensitivity estimates by tuning
cloud and convection parameters against water isotope-based reconstructions from time periods like the
LGM, mid-Holocene, and pre-industrial (e.g., Ramos et al 2022).

In addition to supporting data-model comparisons for periods before the instrumental record, water
isotopes can bolster our confidence in simulations of future climate by helping diagnose and address
problems in model physics broadly. As a higher order quantity, water isotopes tend to highlight problems
with water cycle processes, not just the hydroclimate state. They can therefore isolate compensating errors that
may not be immediately obvious from other variables. For instance, (Risi et al 2012) used water vapor
isotopic observations to show that excessive vertical diffusivity of moisture contributes to humidity biases in
many models. Nusbaumer et al (2017) used precipitation isotope ratios to determine that deep convection
triggers too frequently in CESM, causing biases in precipitation. Others have similarly used water isotopic
information to identify problems with the representation of stratiform precipitation in convection, to detect
biases in the Walker circulation, and to characterize the sensitivity of low clouds to mixing processes (Hu et al
2018, 2020, 2022). Water isotopes can also provide a means to distinguish between thermodynamic and
dynamic drives of climate variability (Dee et al 2018a, Bailey 2020, Risi et al 2020), helping us understand,
for instance, the differences between local moistening of the atmosphere and moisture transport. These
studies prove that there is immense potential for continued water isotope data-model comparison across key
paleoclimate and modern horizons to help improve models, simulations, and forecasts.

4.2. Detection and time of emergence
While water isotopic information provides an important model diagnostic to evaluate the accuracy and
precision of climate changes in the future, it may also help us identify signs of anthropogenically forced
climate change over the next few decades. Signs of anthropogenic forcing are already evident when it comes
to global-mean temperature (Arias et al 2021, Stephen 2021) and regional patterns of soil moisture
(Stevenson et al 2022); however, the human fingerprint on many hydrologic variables is not always clear. For
instance, while early studies reported evidence of increasing precipitation in the deep tropics from satellite
observations (Allan et al 2010, Zhou et al 2011)—as predicted from basic thermodynamic theory (e.g. Held
and Soden 2006)—more recent syntheses covering the last decade have argued that precipitation trends are
not statistically significant (Allan et al 2020). Isotopes may prove especially useful for helping detect signals
of change in this case.

Indeed, because water isotope ratios are integrative quantities, they can help ‘smooth out’ the high level
of inherent spatial variability that plagues traditional measurements and obfuscates signals of forced
anthropogenic change. Moerman et al (2013), for instance, showed that precipitation isotope ratios
expressed a regionally coherent pan-tropical climate signal, even in cases when measurements of regional
precipitation amount did not. Furthermore, because there is broad coherence between the isotope ratios of
water vapor and precipitation (e.g. Bailey et al 2017, 2018), isotopic measurements in water vapor should
allow us to detect the time of emergence of water cycle changes even in regions where precipitation is scarce.

Modern isotope observations can also be compared with the long paleoclimate record, which provides a
critical baseline for statistically quantifying the behavior of water fluxes. This comparison should allow us to
identify, with greater confidence, the time at which forced signals emerge beyond the range of natural
variability. Additional opportunities include leveraging data assimilation techniques to identify the places
where water isotopic changes should most strongly and clearly emerge; this will ensure that observational
stations are optimized for detecting the fingerprint of human-caused change (Bailey et al 2021).
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5. Outlook, opportunities, and recommendations

Water isotopes throughout the Earth system create a common unit that uniquely links paleoclimate
reconstructions, modern climate observations and isotope-enabled model simulations (as described in
sections 1–3). This common framework—linking the past, present, and future—enhances our
understanding of past variability throughout Earth’s history and provides key opportunities for
benchmarking climate models by comparing them with observed variables in the same units (figures 1
and 6). Water isotopes also help distinguish drivers of climatic variability over time, informing us about the
processes that influence hydroclimate in ways that more traditional variables do not. Because of these
characteristics and the integrative nature of isotopic information, there is profound potential for water
isotopes to improve estimates of time of emergence and ECS, both from paleoclimate reconstructions and by
refining model physics (section 4).

In this review, we have shown how increased observations and greater integration of isotopic tracers in
numerical simulations have helped us gain critical insight into climate variability on timescales ranging from
hours to millennia. For example, they have helped us:

• elucidate the coupled atmosphere-ocean response to abrupt climate forcings
• identify the factors that influence the strength of tropical monsoons and their seasonality
• investigate the dynamics that define ENSO states and elevate the sensitivity of polar regions to melt through
global teleconnections

• define the moist processes that dominate distinct stages of the MJO

We have also seen how long records of isotopic variability allow us to capture changes in both the mean
state of the climate system and its variance with greater confidence. This has allowed us to detect increases in
variance in both ENSO and the IOD over recent decades. Finally, we have discussed how projecting future
climate and identifying near-term changes in the water cycle can significantly benefit from the addition of
water isotopic information—on the one hand, because water isotopes smooth inherently noisy signals, and,
on the other, because they provide an extra degree of freedom for diagnosing model skill.

Nevertheless, to achieve the full potential of water isotopes as climate variables, additional commitments
to modern observations, modern and paleoclimate data syntheses, and isotopically enabled models are
necessary. Activities that bridge these scientific tools, including proxy system modeling, data assimilation,
isotope data-model comparisons, should also be accelerated. We suggest the following recommendations to
achieve these goals.

• Sustaining Existing Long-term Measurements: One of the unique qualities of water isotopes is that they
provide an incredibly long record of climate variation. Supporting existing stations, networks, and satel-
lite retrievals will help lengthen isotopic records to quantify current and future hydroclimate trends. Sus-
tained in-situ monitoring is also critical for clarifying proxy biases, including those driven by seasonality,
microclimate, or proxy system effects.

• ExpandingObservations IntoNewKey Locations:Many climatically important regions are still severely under-
represented in the modern isotopic record, compromising process-oriented studies and model diagnostic
evaluations. These include the tropical Pacific and the Global South, as well as most of the free troposphere
(where vertically resolved observations are few and far between). Given the enormous influence of tropical
Pacific interannual variability and the high sensitivity of polar regions, robust pan-tropical and pan-Arctic
networks of water isotope observations would be highly beneficial for evaluating global change. Further-
more, observations that target processes that influence how isotopic signals are transferred from the atmo-
sphere to other reservoirs can help us improve our interpretation of paleoclimate records. Finally, we can
use model simulations to identify locations where isotopic signal-to-noise is expected to be higher than that
of other hydroclimate variables (e.g. precipitation). Such sites could help quantify the time of emergence of
climate changes.

• Supporting Paleoclimate Data Campaigns and Reconstructions:New global paleoclimate networks are poised
to facilitate advanced interpretation of global climate changes and large-scale shifts in the hydrological cycle.
Increasing the number of independent proxy reconstructions from climatically important regions is needed
to bolster confidence in PSMs and paleoclimate signals (particularly where geographic variability in isotopic
records is complex). Such replication efforts and increased data availability will broaden our use of paleo-
climate reconstructions. Of particular need are high-fidelity, high resolution records that provide context
for understanding present and future global water cycle changes. Key target periods include time horizons
where Earth has seen large changes in external climate forcing, such as the Last Interglacial (∼120kyr ago),
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Figure 6. The connected water isotope cycle linking observations and models. Water isotope observations connect the
hydrological cycle from the oceans and land surfaces to the atmosphere, and provide common units linking modern and
paleoclimate observations.

LGM (∼21kyr ago), Mid-Holocene (6–8kyr), and the Common Era (last 2000 years), including the recent
past during.

• Developing New PSMs: Continued improvement of PSMs will help us reconstruct past variations in tem-
perature and precipitation with greater accuracy (e.g. Evans et al 2013, Dee et al 2015a, 2018b, Jones and
Dee 2018, Konecky et al 2019, Lawman et al 2020) and provide important constraints on proxy uncertain-
ties. Coupled with water isotope-enabled models, PSMs provide a full data-model comparison framework
that links climate to proxy observation, placing models and observations in the same units. We suggest that
development efforts focus on water isotope based proxy systems for which no PSM exists and on adding
functionality to published models for corals, speleothems, tree ring cellulose, leaf waxes, ice cores, and lake
sedimentary archives (figure 4).

• Building Big Databases: Developing and expanding large observational or multi-proxy databases (e.g.
IsoBank, Iso2k; figure 5) enhances access to isotopic information and creates new opportunities to investig-
ate large-scale climate features, such as the Global Monsoon and the Walker Circulation, while also provid-
ingmultiple data points for model-observation comparison. Additional efforts are needed to synthesize and
compile modern observations into databases that facilitate comparison with paleoclimate reconstructions
and isotope-enabled climate model output.

• Leveraging Water Isotopes to Refine Model Physics and Tuning; Updating Water Isotope Tracers in Models:
As tracers of water-cycle processes, water isotopes provide an important benchmark and extra degree of
freedom for evaluating numerical simulations across timescales. Global atmospheric observations on sub-
monthly timescales will prove crucial for forthcoming data-model comparison efforts and model inter-
comparison efforts (e.g. Noone and Sturm 2010, Risi et al 2012a). While paleoclimate archives and mod-
ern in-situ observations are essential for model-data comparisons, gridded satellite measurements of water
vapor isotope ratios could also prove especially useful in this regard, as they provide near-global spatial
coverage. However, to facilitate this, water isotope physics must be added up front to production runs for
IPCC-class GCMs. Usually, water isotope physics are added after the fact, once a model has been locked; we
suggest that, because of the utility for data-model comparison and hydrological cycle variability reviewed
here, water isotopes must be included throughout the model development process, and require consistent
stewardship to ensure continuity between model versions. Yet few modeling centers include water isotopic
physics at all. More widespread integration of isotopic physics in numerical simulations and stewardship to
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ensure continuity between model versions would allow more comprehensive evaluation of inherent climate
variability and the representation of moist processes. Just as we have teams that are responsible for land
model hydrology, so too should large modeling centers maintain teams responsible for the water isotope
physics in all model components.

Given the maturation of isotope measurement and modeling, this is an opportune time to leverage water
isotopes to address grand challenges in our understanding of the climate system and to advance our ability to
predict climate variations and changes across time scales. We hope this review serves as a catalyst
spearheading new water isotope science to address the critical climate challenges we face as a global society in
the 21st century.
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Zhao B, Castañeda I S, Salacup J M, Thomas E K, Daniels W C, Schneider T, de Wet G A and Bradley R S 2022a Prolonged drying trend
coincident with the demise of Norse settlement in southern Greenland Sci. Adv. 8 eabm4346

Zhao Q, Xu C, An W, Liu Y and Guo Z 2022b Increased extreme drought events in south–central china since the last century:evidence
from oxygen isotope signatures preserved in tree ring cellulose Dendrochronologia 74 125973

Zhou Y P, Kuan-Man Xu Y C S and Betts A K 2011 Recent trends of the tropical hydrological cycle inferred from global precipitation
climatology project and international satellite cloud climatology project data J. Geophys. Res. (https://doi.org/
10.1029/2010jd015197)

Zhu J et al 2017 Reduced ENSO variability at the LGM revealed by an isotope-enabled earth system model Geophys. Res. Lett. 44 6984–92
Zhu J, Otto-Bliesner B L, Brady E C, Gettelman A, Bacmeister J T, Neale R B, Poulsen C J, Shaw J K, McGraw Z S and Kay J E 2022 LGM

paleoclimate constraints inform cloud parameterizations and equilibrium climate sensitivity in CESM2 J. Adv. Model. Earth Syst.
14

Zhu J, Poulsen C J, Otto-Bliesner B L, Liu Z, Brady E C and Noone D C 2020 Simulation of early eocene water isotopes using an earth
system model and its implication for past climate reconstruction Earth Planet. Sci. Lett. 537 116164

Zhu J, Poulsen C J and Tierney J E 2019 Simulation of eocene extreme warmth and high climate sensitivity through cloud feedbacks Sci.
Adv. 5 eaax1874

Zhu M, Stott L, Buckley B, Yoshimura K and Ra K 2012 Indo-pacific warm pool convection and ENSO since 1867 derived from
cambodian pine tree cellulose oxygen isotopes J. Geophys. Res. 117

28

http://wcrp.ipsl.jussieu.fr/Workshops/Reanalysis2008/Documents/Posters/P3-01_ea.pdf
https://doi.org/10.1126/science.1059412
https://doi.org/10.1126/science.1059412
https://doi.org/10.1126/science.aat9393
https://doi.org/10.1126/science.aat9393
https://doi.org/10.1016/j.quascirev.2011.04.023
https://doi.org/10.1016/j.quascirev.2011.04.023
https://doi.org/10.1126/sciadv.abm4346
https://doi.org/10.1126/sciadv.abm4346
https://doi.org/10.1016/j.dendro.2022.125973
https://doi.org/10.1016/j.dendro.2022.125973
https://doi.org/10.1029/2010jd015197
https://doi.org/10.1029/2010jd015197
https://doi.org/10.1002/2017GL073406
https://doi.org/10.1002/2017GL073406
https://doi.org/10.1029/2021ms002776
https://doi.org/10.1016/j.epsl.2020.116164
https://doi.org/10.1016/j.epsl.2020.116164
https://doi.org/10.1126/sciadv.aax1874
https://doi.org/10.1126/sciadv.aax1874
https://doi.org/10.1029/2011jd017198

	Water isotopes, climate variability, and the hydrological cycle: recent advances and new frontiers
	1. Introduction: water isotopes and the global water cycle
	2. Background: tools of the trade
	2.1. Understanding oxygen and hydrogen isotopes and fractionation
	2.2. Recent advances in recovering water isotope information from the past, present, and future
	2.2.1. Advances in reconstructing the past
	2.2.2. Advances in monitoring the present
	2.2.3. Advances in modeling the future
	2.2.4. Water isotopes as a tool to merge data spanning the past, present, and future


	3. Climate variability through a water isotope lens
	3.1. Orbital to centennial timescales: abrupt climate change and monsoon dynamics
	3.1.1. Ice cores
	3.1.2. Speleothems
	3.1.3. Marine sediments

	3.2. Centennial to interannual timescales: modes of climate variability and their teleconnections
	3.2.1. Lake sediments
	3.2.2. Corals
	3.2.3. Tree ring cellulose
	3.2.4. Ice cores
	3.2.5. Modern water isotope observations

	3.3. The common era: internal variability from global proxy compilations
	3.4. Seasonal to weather timescales: the MJO

	4. Anthropogenic forcing, detection, and attribution
	4.1. Climate sensitivity
	4.2. Detection and time of emergence

	5. Outlook, opportunities, and recommendations
	References


